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A MULTILOOP GENERLALIZATION OF THE CIRCLE STABILITY C RITERION

theores [Z]have led to useful characteriz-ations
A frequency-domain stability criterion is pre. of sets of robustly stable feedback laws for only

S sen ted, generalizing the well-known circle sea- a limited class of proble-s, viz. intercoviec-
oility rieonto multiloop fedaksystems tions of dissipative systems 3]. weakly coupled

___ .aving bounded noonlinearity, parameter varia- interconnections of systems [4] (including so-
lions, and/or frequency-dependen* ignorance of called "diagonally dominant" system' s [5! - (7])

component dynamics. Unlike previous general- and 'nearly normal" systems (81 (which can be

iza'ions, the theory is not restricted to weakly- viewed as vector-space isomorphisms of weakly
coaipled, diagonally dominant or nearly normal coupled systems). It has been argued convjnc-
s'e:s. Potential applcations include the ingly by Rosenbrock and Cook [9] that an es-

analysis of€ feedback lgystem integrity and multi- pecially useful feedback design tool would be a
:onap feddback system - tabilit'., marginls. more general multiloop frequency-domain sta-

bility criterion that incudes diagonal dominance
I. Antraduction and normality results as special cases.

A key step in the synthesis of robustly stable The main result of the present paper is a
feedback systems is the characterization of a stability result that may serve this purpose:

set oft feedback laws that are stabilizing for Theorem I is a multiloop generalization of the
eery element of the set ofi l pmetplant dr- circle stability criterion which does not re-
namics. This type of information is precisely quire diagonal-dominance, weak-couping, norm-

hat is provided fo single-loop eedoack sys- ality. or near normality. The result allows the
tems b' such input-otput stability criteria as frequency-domain testing of the stability of
the yquist, Popov, a d circle theorems. In- mutiloop feedback systems with time-varyng
deed, the practical merit of classical feedback nonlinearities, unknown-but-bounded parameter

tdesin procedures involving Nyquist loci, Bode variations, and even singular perturbations.
lots, and Nichols charts is in a large measure a l

directly a'tributable to the fact that these design The following notation is used: A T and x
proced-Ares provide the designer with an easily denote respectively the t'anspo e of the matrix
interpretable charcterization of such sets of A and the vector x ; A and x dpote the

roboslv s..ble feedback laws. Available multi- complex con iugate of the matrix A and the
variable input-output stability criteria such as vecy Tdrmineting o the triit of

Rosenbrock s multivariable Nyuist theorem n matrix A is denoted dem(A the Euclidian norm
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Given any matrix A, the square-roots of the Dynamical LTI interconnection
eigenvalues ofA' A are called the singular values I
of A [10, pp. 5-11]. For any non-aero Matrix A, we X(s) = - G(s ) + (s)) + U(s) (2.3)

use the notation crmaxA)to denote the largest sing. - where-

ular value of A and 3mi4A) to denote the smallest ' 1 s ~ s
singular value of A; singular values are always non-

negative real numbers since A'h A is always posi- - (S - Ua) n)~
tive semidefinite. For hermitian A (i.e., A =A*),
the notation Xma,4A) and nin(A)to denote respec- L ni-rn LX+nm L
hermitian matrices have only real eigenvalues, l) s )

so ordering of egenvalues is always possible via V(s) A i ,.
the usual ordering of real numbers. i L s G

An operao is a mapping of functions into ] n ,. i0 ,sl
functions; for example, a dXnamicaL system map- n+nr)( (n-n*(n,#-r

ping inputs x EL 2 e (R+, R ) into outputs yE LZe (2.4)
'R+. R m! defines an operator. All operators con-
sidered in this paper are implicitly assumed to be
mappings of L 2e (R+. Rnl) into L 'R+. Rn

for some positive integers n, anin , an opera-

tor His said to be nonanticipative if r

(Hxl) (t0 )= ( Hx 2 ) (to) ,

for any t o and any pair of functions x1 and x, .. Y.

having the ?roperty that for ail t < to -;-

I I .

i.e., a non anticipa'ive operator H is one having *

the property that its insta-itaneous output H x at *j* **'"

any time to is independent of the values assumed LCOMPONEtTS 1 i 4
by the input x(t) at future times t > to . We
say that an operator T mapping signals Gx L- 'R Rn ) into signals Hx L. IR

2e ,.1 1 - " 2.e R)+ L

is Le - stable if there exists a constant k <ERCCNNECT!ON

such that for all x E L2 e ,n 'R

j i x k* : z :!

II. Problem Formulation Fig. I The System

Our results concern the input-output stability The indogenous variables yi(t) and x1 (t) are
ofhe system 'outputs' and the exogenous variablesof ystms onsstig o a ynaica LT nea- ul~t) and v.(t) are the system 'inputs. Each of
tive-feedba:k interconnection of m memoryless t . "the s t ' Eac of

time-varying nonlinear components and n dyn- th 'm on ets' (h I (- MO systm .H g n rl

amical LTI components. The system's equa- mn) may itself be a MIMO system in general.

tions thus take the following form (see Fig. I) though our results seem to be most easily used

Memoryless nonlinear components and interpreted when the components are SISO.

YI (t) h i lxI (t) , t ) Our stability results do not require that we

t ( *(2. 1) have available an exact mathematical description

Ym(t) hm(xm M t of the components. For each of the nonlinear

Dynamical LTI component nondynamical elements, we assume only that
S2mttrices C -R. and S. can be found such thatY l(yHnl(S) X p ( S )  -(2-)R R .. and 9fS are pas tive definite and suchthat

1 (2 2)(h,.(x. (t), h - t),; 5 R ', xi~t . -,;6.(t) ;

rnn(S) Il.,(s ) Xm+(S) for some > 0 all x(t, and all t •
T A torm ot global input-output stabiTity, ouro

def~iition of L2e - stable is equivalent to ti = l .... . 2. I
L stable [ri1 and to'finite gain stable' (2. 51

(with respect to the l., norm) [121 when H For each of the n dynamical LTI components

is a ionanticipative operator. Fli Is I mi .... r-ni we assume Dnly



thaP H.(a) has a proper rational transfer function
malrix Land that proper rational transfer function
matric.fa Ci(s), .'Yj and Sis can be found such 2-h~ J
that R1 (-jaj) Ri ~~ I adT S(j~j) are positive
definite and have no poles on the a Jju axis and
such that Hi(s) - C.(s) has no poles inf Is Rewas)Y .X

i -3 -2 1I
and C.j cj

for some a > 0 *all X .(ju1 ) and all wv

M+ I ~..m+n). (a) Nonlinear component satisfying (2. 5') 4

For notational convenience, we define the follow- H~0
in3 block-diagonal matrices isC(0

* C(s)7diag(C1 ,. .Cm. C 1 ) C (s

(2.7) ( I

R(s) diag(Ri mR Rm ()..

(2. 8)

S;. ) ;diag(s ....... S m+i (s . M+(.)

(2.9)

Comments: (b) Nyguist locus of L.TI component
satisfying (2.6')

The conditions (2. 5) - (2. 6) can be interpre-
ted as saying that we are assuming knowledge Fig. 2 SISO Components
aboout each of the components is limited to an ap-
proximate LTI model (viz. C.) and bounds (de- I.H. Main Result
termined by (R. I S i)) on the coarsene..s of the Ormi euti o ttd
approximation.'Ormireutinosae.

Theorem I (Multiloop Circle Stabilit,
For the case of SISO components, the condi- Criterion);

tions (2. 5) and (2. 6) can be replaced respectively Suppose that the system (2.1)-(2.4) is
by the simpler conditions L 2 .- stable for the case when

ixit, -ciX.(t) 1 h.(x., t) ! iM 31
Ix (t) 1 2(2 5') lA(s) C C1 Is) mi.,.. Tn).

for some a > 0, all x.(t) * 0, and all t Then, a sufficient condition for the system
I' (Z. 1) - (2. 4Y to be L2. -stable for every col-

SiJ) - c (i ) r'.( io - lection of h.( -. ,t) U = 1. .. ,m) and Ha(s)

ior~ ~~ soes>0adal 26) (i = m+l . n) satisfying (2. 5) and (2. 6)
Lor omet > andall~ Jrespectively is that any one of the following

conditions hold for all real Wl
where for all i =I n+mnXMnlCjjG-juI T ,iS I) (+ UL. ~

1 1-G (-jv)R (-vjIJR(JL) j )a0

ii) XMi(c(-wJ 'lAJ J ) S-)S(jL i(ji )4'I(jX)

* These 31S0 conditions are readily interpreted
* ~graphically as shown in Fig. 2.(3 b

33Zb



iii) a S(j's) C(Yu) + G7 (JO ) R lI(ji ji Ic + 11r 1.mi (4.OV))
(3. Zc) where

iv ax(R030 GOji) (I + C(ji;)G6iu4)lS Jr) i r, R S

(3. 2d)

cl C I

Condition (3. Za) is imnlied by (3. Zb)-(3. 2d) and,
when the inverses G-. , R - 1 , S - I are defined, or. equivalently (assuming r, > 0).
conditions (3. Za)-(3. 2d) are equivalent.

2 2
PROOF: See Anpeadix i) if c1 - r1 > 0

c I  > r IIV. Discussion IG(j) + I--- 1 2 2 (4.3a)

There are essentially two main conditions 2 -r-r
which must be satisfied to conclude stability from ii if c 1 -rI <0

Theorem 1: (i) The system must be stable when c I
the uncertain nonlinear components h.(.,t) and I G(j)+4 2 - < - (4.3b)
LT! components HI(s) are all replaced by the re- c1 - r r1 c 1
spective LTI approximations C. and C.(s); and, 2 2 0
(iii the frequency-domain condition (3. 2) must be 1 1
satisfied. The former condition can be verified
a variety of ways: for example, one may check ) > - 4.3c)
that the roots of the characteristic equation c I + I r I I

C(s) 20 (4.1) These conditions on G(ja) are precisely the con-

all have negative real parts ; alternatively, one ditions of the well-known circle stability cri-
may apply the multivariable Nyquist criterion, terion (cf. [1 5] ). It is this which motivates us to
checking that the polar plot of the locus of refer to Theorem I as a 'multiloop circle stability
del (C(jtI) G(jz)) encircles the point -1 + jO criterion' - despite the fact that in general no
exactly once counterclockwise for each unstable circles are employed in verifying its conditions.
open-loop poledC (s) G(s) (multiplicities counted)
(11 , [21]. The latter condition (3.2) requires One can interpret the uncertainty bounds
,hat ont: plot the variable ore or a . ) (R., S.) as specifications for the gain marginsverses i; and verify that the a pratnequa - ank pase margins cf -.he system (Z. I)-(?..4).

ity holds for all - . If ra =0, if Hi(s) aCj(s) (1=[,. ... n) and if the
ccnponents are SISO, then ,under the conditions

:n the special case in which there is a single of Theorem I, the system will remain stable
scalar nonlinearity h 1 (xlt) (so that m = I and despite variations in the individual component
n = 0l, both of the conditions of Theorem i can be gains of magnitudes as great as I r,(j 4 1A
verified by inspection of the polar plot of Gkjb) J)/S.j I, even when the variitions occur
vs . Stability for the special case hi(x, t) = clx1  siinuitan,-ousl- in all comprnents. So. ior ex-
is assured by the Nyquist stability criterion if arapie, the system can tolerate simltaneous
and only if GjA encircles -1 + jO once for each gain variations or phase variations of at leas-
unstable pole of 3(s) as a increases from - to )lj)
- . Condition (3. 2) becomes C i 2C log I b (4.4)

or ~r I,.j W)l

9 __ini arcsini I (4.512 C(si G(s) hat any de:o.apLing zeroe' )i. e., M. J) C (ji}
:ncontroilable or unobservabl. poles). then

'nese will not be roots of (4. 1) and one inkist
check separately that these poles have negative
real parts ct. i141



in each of the respective compor.ent input chan- Appendix
nel's (i=l .. ,n); i.e. , the system has gain mar-
g.ns of at least GM. and phase margin: cf at In this appendix. Theorem I is proved using
east *i at the inputs to the respective zon- the sector stability criterion of [17]. [18], [19].
ponents C(s) (i=1.. ). The quantity We begin by introducing some additional termin-

I{ ology, and a relevant special case of the sector
k US ) (Cw ) + G- l j j) l0 stability criterion, viz. Theorem Al. We then
M %in )(4.6) establish via several lemmas that the conditions

of Theorem I are sufficient to ensure that the
is the amount by which the uncertainty bounting conditions of Theorem Al are satisfied.
matrices Rj can be simultaneously increased
without violating the stability conditions .3f The- Definition(Le-Conet(-,.- ): strictly inside, outside):
crem I -the scalar km can be viewed as a
lower bound on the amount by which the system Given any three operators C, R, S. we define
(2. I)-(Z.4) exceeds the stability margin speci-
fications (Z. 5) 12 . 6). L2  - Cone (2, R.S)( F(x.y.T).

for al TE R + (AI)
wtherea

in general, the stability conditions -

and the estimate (4.6) of excess stability mar- F1x,i, ) = i S(y - x '- U 1 . (AZ)
gin km - of Theorem I will be conservative. and for all z, z z
The conservativeness can usuaily be reduced by 2
multiplying equations (2.5)-('&. 6) by appropri-
ateiy chosen positive scalars and ' T , a (A3)
Si (J) 12 respectively before applying Theorem T
1. This has the net effect of substituting 'weight- < Za, z •  (t) zt) dt4A41
ad' uncertainty bounding matrices (Oi Ri , aiSl) 0
for the original matrices (Ri . Si ). Further Given an operator H mapping signals x into
study is required to determine the extent to which signals y, we say
it will be practical to exploit such weighting to
reduce the conservativeness of Theorem 1. H strictly inside L - Cone (S, R, ) (AS)

Uf there exists an a > 0 such that for every pair

V. Conclusions (x, y) satisfying y = Hx

I~ y-C~jI . - + 1i hyU (A 6)
The practical importance of our multiloop for all T E P,

circle theorem is that it provides verifiable +
sufficient conditions for the stability of multi- Given an operator - mapping signals y into
loop feedback systems using only crude bounds signals x, we say
on system parameters, component frequency
responses, and nonlinearities. iotential appli- (-G outside L - Cone (E, (, s) A)
cations include the testing of system integrity 1W -e e

in the presence of actuator and / or sensor if for every pair (xy) satisfying x =-Gy we have
iailures (cf. (161 ) and the characterization of the
stability margins (e. g., gain & phase margin) of I S (y-CX) .2 2 (A 8)
multiloop feedback designs subject to simultaneous K X x
perturbations in gain and phase in the feedback for all R R
loops. Thecrem I also plays a ke'y role in bound- +
ing the response of systems with uncertain dy-
namics (22. Theorem Al Let p be a positive integer;

let H. (a=1. p) be operators mapping into

Yi; lZH be the operator



By the composite system property of sectors

(cf., Lemma 6.1 (vi) of [18])and (All), it follows
that

H strictly inside Sector ( (AZO)
(A 9) S -C +R

By (Al2),

where C outside Sector . (A 21)

(AI0) Theorem A I follows from Theorem 6.1 of [181
(the sector stability criterion).

p Theorem Al together with the following three

If there exist operators C.. R., S. (i= . P) Lemmas, establish Theorem 1.

such that I L Lemma A2: Let h(x (t),t) be any function of

H. strictly inside L2e - Cane (Ci, iR, iS) x(t) and t and let H be given by

for all i = 1,....p 
(All)

Let C, R, and S be matrices and let C, R, S
and be the operators defined by

(-G) outside LZe - Cone (C.. ~, S') (A12) (Cx)(t) = C x (t) x (A23)

then the system (x)(t) Rx (t) '4x (A24)

L = Hx (A13) ()(t,- s y(t). y. (A25)

x -G(y+v) + u

is Le stable. Suppose S"I exists, then

Proof: The expression (A2) can be written H strictly inside L Cone (C . ) (AZ6)
equivalently, ye o -. .

< IllF +F 21X22 x >if and only if(x~y, -r 11 -12u ! 2 1zY +F 22 X>.
(A14) Is(h(x(t). t) - C X(t)) {t }l x 2t),2

where - 2I=()I
-ix(t) LIZ

-l -21 - (A1S) x x(t). (AV7)

FIz + R (A16) Proof: Le y(t) = h(x(t).t). Suppose (AV7)

F2 =-C- R . (Al7) holds. Then.

Thus 
M 1ixt A8

Cone (C l. ) S Sector A . 8 (tw h e r x(t)I (A28)
= I. I; where

(i = ... r+n) = -(1 +a (

and m 
C). (A9)

Con (,C- AR 9 Thus, takingCone (c, L s = Sector ) (A19) (A30)

w e h e t w h e ( A0 )

we have that when (A27) holds, then



I
I~s(y.QC,) hLr = ;ls(~ - C) a

S h (,t, C x(t) (by nonanticipativeness)
- -e x (t)i x(t) d 2-£)flT (t) dt

( dthe integral exists since S, H, C and 91restab
R ,I (t)It (Ix( M 1~

2f [I S(j(H(j4-C(jO ) R7'(Jo

+ ll y4 dt 1 ds1

; IlRxhl - ( ;i iT + !IYiIT ) (by Parseval'. Theorem)

(A31)

Conversely, when (AZ) holds, then taking x(t) I (' jtI z'j -FIllIjz142$4
to be the constant function x(t) Ax 0  we have

that for some 6 > 0

Its (h x 0 X , ) - C )( 
by (A34))

- li fxc- Cx -l ~,.ld
-~ z a lI(_R-'lz~t) d2 

dt

1 -- (i.~ (by Parseval's Theorem)

R 20 i -611 .0 !12 (A32) z_ (t) i Zdt

- E= RX0 -C T 'I dt

Lemnma A3* Let H, , ... be nonanticipa- -cf d ia)(t)4 dt
tive LZ's-stable linear-time-invariant operators 0
with respective rational transfer function rntri-
ces H(l), C(s). K(s), SOs). Suppose that R_ (a) ii 'Y'T -g
exists and has no poles in Re(s) 0. T T *,

~~~~Then i t z  , ._ _;z
Then sr(by 

nonanticipativeness of ;l)
H strictly inside Lze-Coe (A 33) Ltx 12  

2

if and only if T

2 ' ~~IIRxILO -( ZI 4..I1i.
S1 S (j, (H (j .- C (jm))x (jb - ' x -,

-~ , iiXoo I 2 (A34) (A36)
for all X(j4 all m, and some c 0 where 6

Proof: Let R denote the stable nonantici- E ' (A37)

pative LITI operator having transfer function ma-
trix R (a). Suppose that (A34) holds and let and

(BO if t f-
S0 ,if t > T ( ) Y sup

and let Zrj* denote the Fourier transform of (A 38)
z.it). Then, for all y = H x we have (since H is stable)

., s- , -Cx ( x C
- a Conversely suppose (A33) holds. Le, X 0

I SH- C) x and w. be arbitrary. Then, letting x(t) --

(by linearity) jui:t

0 iS(H R)1 2 X e and ' ,we have trivially from

(since R- I exists) Parseval's Theorem that

7J



Now,

:1Sot~) (H(j-u0 ) -C(jh-b))Xo ~al 2  IR IC)-l1.

zIlRUjo) X0 .2 - 1I X0 'P11 (A39)) X-1'L ,(+Cvi
I jJ~jub X0 1 X0il (39)by the nonanticptiveless of

Lemma A4: Let C, C, R, S be linear-time. 'a 9 '1+CQ

invariant operators with respective proper ration-
al transfer fy nctions H(s), C(S). R(s), S(s). Sup- T dd
pose 'hat S (a) exists and has a proper rational
transfer function matrix wit I no poles iji Re(s)zO.
SupposethatR, G(I+Q~ 5;G and areL 2e f "I R(jM C(j.LdI+C(j-lrG(jJ4) 1 S-j4
stable and nonanticipative. Then,

( outside L 2 e- Cone (C., R, (A40 V~ja jdw

if and only if -any one of the following conditions by Pars oval's Theorem
hold for all real jj and the hypothr sea th91

'~ .Lk T ( Q. G(+G) , andS

1, m.~i +C(-jY4 G(-JJJ)S(ji)Sji (C (j+Gi 1  are LZe stable.

CG (-ju) RT(-j-) R(j-a) G(j- 2: 0 (A4la) it J I (j,,() IId')

T IJ-jJ Rj4 0 (A41b)- vi

iii) ai(SI (C 014 + Oj') R7;ijt) I I (A41c) T l~y~fl A5

i iv) * ,~j! G~J(+~~ ) i4 1 S~ Conversely, suppose that (A40) holds. Let
iv Ymax ROGA( CW ''O. S-O) and ai~ be arbitrary. The lIng y - Y eixWOt

(A41d) and T-*2 we have from (A40) and arsea'

When 1 (jw andTheorem that

Whend ar (equiant, 1. exist, conditions (A41a)- Rju)2

and hence (A41a) holds.

Proof:
This completes the proof of Theorem 1.

It is trivial to show that (A41a) is alwlys im-
plied by (A41b) - (A4 Id) and that, when G (jw)
and R (jw) exist, (A4la) - (A41d) are equivalent.

Suppose that (A4 Ia) holds. Let (x, y) by any ___

input-output poir satisfying x= -2y let rlj H. R. ...ebaock. 0...;. 4 %lultivartble CoamtSystems Using

V S~y 2 x(A42) III a . 0 . athe 1-p*O aPe Stability of ?me.vatytng x0011..r
(y - x ) A4Z)F..b..h Systems ...- Parr!: .clitings Usuag concepts of Loop

and Let a.ALC13. ! . pp. 214-111. Apr. .4b.. t !
t U .K. S...lamsa,., .ad M. '.0"sase. ILZ StabilLU .f Large.

g t ) i f 0 t 4 T S c a l e O y fa mW c a S y s e m . .. * . - C r n , . . i a V i a P 6 . 4 4 . O p W 4 9 * r ov

y i(A43) mbw'. !E&_tr I..... sa.kv*.- c..1 AC. 45. 3. L,. 1977.

0 otherwise [41 'o. Arak,. 'iap'-0.Pat stsbdtyt ~Lcompe.te F.dbak systema--

sformZE .. o LT r n a Aw . .C* al . a. AC.Z11. Apr. 1471b. pp. ZS4.253.

Let V,. (j4) denote the Fourier transfr ofj v.H.H 0~*~,.o ~lab.cu
,Note that from (A4l,~ it follows that for all V.$jo . *' M. a~arnt M~tv-! Cicle.& Tha .ia,in Rece. 91..

2. . H' R .. crI.Tm'n' I ea a
,~R~'* Gja)- I.'W d,~0 ~ .. by D.:. 31t. Aced,.~ P?....

.~~V ~iJ1) --~~ -.- 4 0 p A oC ,,y1 4. y .1. sell. A ~ ademic4

V a0. (A44)
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